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Abstract. A common way by which attackers gain control of hosts is
through remote exploits. A new dimension to the problem is added by
worms which use exploit code to self-propagate, and are becoming a
commonplace occurrence. Defense mechanisms exist but popular ones are
signature-based techniques which use known byte patterns, and they can
be thwarted using polymorphism, metamorphism and other obfuscations.
In this paper, we argue that exploit code is characterized by more than
just a byte pattern because, in addition, there is a definite control and
data flow. We propose a fast static analysis based approach which is
essentially a litmus test and operates by making a distinction between
data, programs and program-like exploit code. We have implemented a
prototype called styx and evaluated it against real data collected at our
organizational network. Results show that it is able to detect a variety
of exploit code and can also generate very specific signatures. Moreover,
it shows initial promise against polymorphism and metamorphism.

1 Introduction and Motivation

External attackers target computer systems by exploiting unpatched vulnera-
bilities in network services. This problem is well-known and several approaches
have been proposed to counter it. Origins of a vulnerability can be traced back
to bugs in software, which programming language security approaches attempt
to detect automatically. [37,10]. However, due to technical difficulties involved
in static analysis of programs [25,32], not all bugs can be found and eliminated.
An alternative approach is to detect attacks at runtime either via code instru-
mentations [18,13] or intrusion detection [15]. But runtime checks may cause
significant overheads as an undesirable side-effect.

An orthogonal approach which complements these techniques in preventing
remote attacks involves detecting exploit code inside network flows. An impor-
tant advantage of this approach is that it is proactive and countermeasures can
be taken even before the exploit code begins affecting the target program.
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Fig. 1. General structure of exploit code

Figure 1 shows the structure of a typical exploit code, which consists of three
distinct components - 1) a return address block, 2) a NOOP sled, and 3) the
payload. The main purpose of such a construction is that when a function returns
following a buffer overflow, the return address block directs execution on to the
NOOP sled, which eventually reaches the payload.

The basic idea of exploit code detection inside network flows with the goal of
preventing remote exploits is not new. Support for packet-level pattern match-
ing has long been offered by network-based intrusion detection systems such as
Snort and Bro, and detecting exploit code entails specifying the corresponding
signature. While such systems are relatively easy to implement and perform well,
their security guarantees are only as good as the signature repository. Evasion is
simply a matter of operating outside a signature repository and this is achieved
either by altering instructions or instruction sequence (metamorphism), encryp-
tion/decryption (polymorphism), or discovering an entirely new vulnerability
and writing the corresponding exploit (zero-day exploit). As a rule of thumb,
signatures must be long so that they are specific enough to reduce false positives
which may occur when normal data accidentally matches exploit code signatures.
Also, the number of signatures has to be few to achieve scalability because the
signature matching process can become computationally and storage intensive.
These two goals are seriously hindered by polymorphism and metamorphism
and pose significant challenges for signature-based detection systems especially
when automated toolkits are available [6,3].

Polymorphism and metamorphism affect the three components of exploit code
differently. The payload component can be concealed to evade signature-based
detection using either polymorphism and metamorphism, and therefore, is sel-
dom the focus of detection. In an exploit code, the return address block and
the NOOP sled are used to improve chances of success by accounting for the
uncertainty regarding the vulnerable buffer such as its actual address in mem-
ory. Therefore, it is only reasonable to assume that polymorphic encryption
cannot be applied to them and they must be in plain view. On the downside,
the NOOP sled is still susceptible to metamorphism and the return address
block may be too short to be useful. Consequently, although recently proposed
techniques [16,35,31] for detection of exploit code have attempted to cope with
polymorphism and metamorphism, there are shortcomings and some challenges
remain. To summarize, signature-based detection techniques cannot provide all
the answers and we must look elsewhere for more effective techniques.
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Table 1. Some popularly targeted network services as reported by SANS [5], their
port numbers and the general nature of network flows on the corresponding ports as
observed empirically

Microsoft Windows

Vulnerable service/program Port Content Type

IIS Webserver 80 Mostly data
Workstation Service 139, 445 Data
Remote Access Services 111, 137, 138, 139 Data
Microsoft SQL Server 1434 Data
Instant messaging
(MSN, Yahoo, AOL) 1863, 5050, 5190-5193 Mostly data

GNU/Linux

Vulnerable service/program Port Content Type

BIND 53 Data
Apache Webserver 80 Mostly data
pserver/Version Control 2401 Data
Mail Transport 25 Mostly data
SNMP 161 Data
Database Systems
(Oracle, MySQL, PostgreSQL) 1521, 3306, 5432 Data

In this paper, we propose an approach which takes the viewpoint that the
nature of communication to and from network services is predominantly or exclu-
sively data and not executable code (see Table 1). Since remote exploits are typi-
cally executable code transmitted over a network, it is possible to detect exploits
if a distinction can be made between data and executable code in the context of a
network flow. One such exploit code indicator was proposed by Toth and Kruegel
[35] wherein binary disassembly is performed over a network flow and a long se-
quence of valid instructions shows the presence of a NOOP sled. However, this
scheme falls short, firstly because it is easily defeated by a metamorphic NOOP
sled [16], and secondly, because it doesn’t take into account information given
away by branch instructions. Hence, mere binary disassembly is not adequate.

Exploit code, although not a full program, is very “program-like” and has a
certain structure. Moreover, the code must achieve whatever goal was intended
by the exploit code author through some sequence of executable instructions.
Therefore, there is a definite data and control flow, and at least some of which
must be in plain view. Our approach to exploit detection is to look for evidence
of meaningful data and control flow, essentially focusing on both NOOP sled
and payload components whenever possible. An important consequence of using
a static analysis based approach is that it can not only detect previously unseen
exploit code but is also more resilient to changes in implementation which exploit
code authors employ to defeat signature-based techniques.

There are significant differences both in terms of goals and challenges faced
between static analysis of programs and our approach. When performing static
analysis, the goal is to reason about a program and answer the question: can pro-
gram execution lead to unpredictable or malicious behavior? We face a different
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problem, which is phrased as follows. Consider one or more executable code frag-
ments with no additional information in terms of program headers, symbol tables
or debugging information. At this point, we neither have a well-defined program
nor can we trivially determine the execution entry point. Next, consider a set of
network flows and arbitrarily choose both a flow as well as the location inside the
flow where the code fragments will be embedded. Now, we ask the question: given
a flow, can we detect whether a flow contains the program-like code or not? Also,
if it does, can we recover at least majority of the code fragments, both for further
analysis as well as signature generation? In other words, one challenge is to per-
form static analysis while recovering the code fragments without the knowledge of
their exact location. The other is that the process must be efficient in order scale
to network traffic. We show that this is possible albeit in a probabilistic sense.

The relevance of our work goes beyond singular exploits. Lately, there has been
a proliferation of Internet worms and there is a strong relationship between the
worm spread mechanism and remote exploits.

1.1 Connections Between Exploit Code and Worm Spread
Mechanism

Following earlier efforts [33,43,29] in understanding worms which are self-
propagating malware, several techniques have been proposed to detect and
contain them. For a comprehensive overview of various types of worms, we rec-
ommend the excellent taxonomy by Weaver et al. [39].

As is the case with most security areas, there is an arms race unfolding
between worm authors and worm detection techniques. For example, portscan
detection algorithms [19,40] proposed to rapidly detect scanning worms can be
eluded if hitlists are used and one such worm named Santy surfaced recently
which used Google searches to find its victims. Table 2 is a compilation of a few
representative worm detection algorithms, their working principles and worm
counterexamples which can evade detection. In their taxonomy, Weaver et al.
[39] had foreseen such possibilities and only within a year of this work, we are
beginning to see the corresponding worm implementations. Moreover, with the
availability of now mature virus and exploit authoring toolkits which can create
stealthy code [6,3], a worm author’s task is becoming increasingly easy.

The main point we want to make is that while the working principles specified
in the second column of Table 2 are sufficient conditions for the presence of worm
activity, they are not necessary conditions and the counterexamples in the third
column support the latter claim. The necessary condition for a worm is self-
propagation and so far this property has been realized primarily through the use
of exploit code; a situation which is unlikely to change. Therefore, if an effective
technique can be devised to detect exploit code, then we automatically get worm
detection for free regardless of the type of the worm.

1.2 Contributions

There are two main contributions in this paper. As the first contribution, we
propose a static analysis approach which can be used over network flows with
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Table 2. A compilation of worm detection techniques, their working principles and
counterexamples

Worm Detection Ap-
proach

Working Principle Counterexample

Portscan Detection [19,41] Scanning worms discover
victims by trial-and-error,
resulting in several failed
connections

Histlist worms, e.g. Santy
worm [1] used Google
searches.

Distributed Worm Signa-
ture Detection [21]

Worm code propagation
appears as replicated
byte sequences in network
streams

Polymorphic and meta-
morphic worms, e.g. Phat-
bot worm [27].

Worm/virus Throttle [36] Rate-limiting outgoing
connections slows down
worm spread

Slow-spreading worms.

Network Activity-Based
Detection [42]

Detect “S”-shaped network
activity pattern character-
istic of worm propagation

Slow-spreading worms.

Honeypots/Honeyfarms Collections of honeypots
fed by network telescopes,
worm signatures obtained
from outgoing/incoming
traffic.

Anti-honeypot technology
[23]

Statistics-Based Payload
Detection [38]

Normal traffic has different
byte-level statistics than
worm infested traffic

Blend into normal traffic
[22]

the aim of distinguishing data and program-like code. In this regard, we answer
the following two questions.

How can the instruction stream of an exploit code be recovered without the
knowledge of its exact location inside a network flow? The exact location of
the exploit code inside a network flow depends on several factors, one of them
being the targeted vulnerability, and since we have no prior information about
the existence of vulnerabilities or lack thereof, we cannot make any assump-
tions. Nevertheless, Linn et al. [26] observed that Intel binary disassembly has a
self-correcting property, that is, performing disassembly over a byte stream con-
taining executable code fragments but without the knowledge of their location
still leads to the recovery of a large portion of the executable fragments. Our
approach also leverages this property and we present a more in-depth analysis to
show that it is relevant even for network flows. Consequently, we have an efficient
technique to recover the instruction stream, which although lossy, is sufficiently
accurate to perform static analysis.

How can static analysis be performed with only a reasonable cost? Static anal-
ysis typically incurs a very high cost and is only suitable for offline analysis. On
the other hand, our aim in using static analysis is only to the extent of realiz-
ing an exploit code indicator which establishes a distinction between data and
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executable code. We analyze the instruction stream produced via binary disas-
sembly using basic data and control flow, and look for a meaningful structure
in terms a sequence of valid instructions and branch targets. Such a structure
has a very low probability of occurrence in a random data stream. Since we use
an abbreviated form of static analysis, the costs are reasonable, which makes it
suitable for use in online detection. In the context of detection, false positives
can occur when random data is mistaken for executable code, but this is highly
unlikely. Also, an exploit code author may deliberately disguise executable code
as data, leading to false negatives. This is a harder problem to solve and we pay
attention to this aspect during algorithm design wherever relevant.

These two aspects in cohesion form the core of our exploit code detection
methodology, which we call convergent static analysis. We have evaluated our
approach using the Metasploit framework [3], which currently supports several
exploits with features such as payload encryption and metamorphic NOOP sleds.
We are interested mainly in evaluating effectiveness in detecting exploit code
and resistance to evasion. Also, given the popularity of the 32-bit x86 processor
family, we consider the more relevant and pressing problem of detecting exploit
code targeted against this architecture.

As our second contribution, we describe the design and architecture of an
network flow based exploit code detection sensor hinging on this methodology.
Sensor deployment in a real-world setting raises several practical issues such as
performance overheads, sensor placement and management. In order to gain in-
sight into these issues, we have performed our evaluation based on traces (several
gigabytes in size) collected from an 100Mbps enterprise network over a period
of 1-2 weeks. The dataset consists of flows that are heterogeneous in terms of
operating systems involved and services running on the hosts.

1.3 Summary of Results

As a primary exploit detection mechanism, our approach offers the following
benefits over signature-based detection systems.

– It can detect zero-day and metamorphic exploit code. Moreover, it can also
detect polymorphic code, but the mileage may vary.

– It does not incur high maintenance costs unlike signature-based detection
systems where signature generation and updates are a constant concern.

While our approach can operate in a stand-alone manner, it can also comple-
ment signature-based detection systems, offering the following benefit.

– If signature-based detection is to be effective, then the signature repository
has to be kept up-to-date; a practically impossible task without automated
tools. Our approach, by virtue of its ability to separate data and exploit code,
identify portions of a network flow which correspond to an exploit. Therefore,
it also serves as a technique which can automatically generate precise and
high quality signatures. This is particularly invaluable since significant effort
goes into maintaining the signature repository.
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The rest of the paper is organized as follows. Related work is discussed in
Section 2. Our first contribution is presented in Section 3. The core exploit code
detection mechanism is described in Section 4.

2 Related Work

The two broad areas which are relevant to our work are exploit code detection
inside network flows and static analysis, and significant advances have been made
in both these areas. We review and compare some of them to put our work in
perspective.

Several research efforts have acknowledged these evasion tactics and proposed
possible solutions to deal with them, but they have their limitations. Hittel [16]
showed how a metamorphic sled can be constructed and in the same paper,
developed Snort rules for detection; however, their number can be very large.
Toth and Kruegel [35], also concentrating on the NOOP sled, went one step fur-
ther. They used binary disassembly to find sequences of executable instructions
bounded by branch or invalid instructions; hence, longer the sequence, greater
the evidence of a NOOP sled. However, this scheme can be easily defeated by
interspersing branch instructions among normal code [16], resulting in very short
sequences. In our approach, although we perform binary disassembly, its purpose
is to assist static analysis. Recently, Pasupulati et al. [31] proposed a technique
to detect the return address component by matching against candidate buffer
addresses. While this technique is very novel and perhaps the first to address
metamorphic and polymorphic code, there are caveats. First, the return address
component could be very small so that when translated to a signature, it is not
specific enough. Secondly, even small changes in software are likely to alter buffer
addresses in memory. Consequently, this approach runs into similar administra-
tive overheads as existing signature-based detection systems. We do not focus
on the return address component and changes in software do not impact our
approach. Wang et al. [38] proposed a payload based anomaly detection system
called PAYL which works by first training with normal network flow traffic and
subsequently using several byte-level statistical measures to detect exploit code.
But it is possible to evade detection by implementing the exploit code in such a
way that it statistically mimics normal traffic [22].

Instruction recovery is central to static analysis and there are two general
approaches - 1) linear sweep, which begins decoding from the first byte, and
2) recursive traversal [9], which follows instruction flow as it decodes. The first
approach is straightforward with the underlying assumption that the entire byte
stream consists exclusively of instructions. In contrast, the common case for
our approach is the byte stream exclusively contains data. The second approach
tries to account for data embedded among instructions. This may seem similar to
our approach but the major difference is that the execution entry point must be
known for recursive traversal to follow control flow. When the branch targets are
not obvious due to obfuscations, then it is not trivial to determine control flow.
To address this issue, an extension called speculative disassembly was proposed
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by Cifuentes et al. [12], which as the name suggests attempts to determine via
a linear sweep style disassembly whether a portion of the byte stream could be
a potential control flow target. This is similar to our approach since the main
idea is to reason whether a stream of bytes can be executable code. In general,
all these approaches aim for accuracy but for our approach although accuracy is
important, it is closely accompanied by the additional design goal of efficiency.

The differences between static analysis of malicious programs and exploit code
inside network flows notwithstanding, there are lessons to be learnt from stud-
ies of obfuscation techniques which hinder static analysis as well as techniques
proposed to counter them. Christodorescu et al. reported that even basic ob-
fuscation techniques [11] can cause anti-virus scanners to miss malicious code.
They go on to describe a technique to counter these code transformation us-
ing general representations of commonly occurring virus patterns. Linn et al.
describe several obfuscation techniques [26] which are very relevant to our ap-
proach, such as embedding data inside executable code to confuse automatic
disassembly. Kruegel et al. devised heuristics [24] to address some of these ob-
fuscations. These algorithms tackle a much harder problem and aim for accuracy
in static analysis, while our approach does not for reasons of efficiency and only
partial knowledge being available.

3 Convergent Binary Disassembly

Static analysis of binary programs typically begins with disassembly followed
by data and control flow analysis. In general, the effectiveness of static analysis
greatly depends on how accurately the execution stream is reconstructed. This
is still true in our case even if we use static analysis to distinguish data and exe-
cutable code in a network flow rather than in the context of programs. However,
this turns out to be a significant challenge as we do not know if a network flow
contains executable code fragments and even if it does, we do not know where.
This is a significant problem and it is addressed in our approach by leveraging
the self-correcting property of Intel binary disassembly [26]. In this section, we
perform an analysis of this property in the context of network flows.

3.1 Convergence in Network Flows

The self-correcting property of Intel binary disassembly is interesting because
it tends to converge to the same instruction stream with the loss of only a few
instructions. This appears to occur in spite of the network stream consisting
primarily of random data and also when disassembly is performed beginning
at different offsets. These observations are based on experiments conducted over
network flows in our dataset. We considered four representative types of network
flows - HTTP (plain text), SSH (encrypted), X11 (binary) and CIFS (binary). As
for the exploit code, we used the Metasploit framework to automatically generate
a few instances. We studied the effects of binary disassembly by varying the
offsets of the embedded exploit code as well as the content of the network flow.
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Fig. 2. General IA-32 instruction format

Convergence occurred in every instance but with different number of incorrectly
instructions, ranging from 0 to 4 instructions.

The phenomenon of convergence can be explained by the nature of the Intel
instruction set. Since Intel uses a complex instruction set computer architecture,
the instruction set is very dense. Out of the 256 possible values for a given
start byte to disassemble from, only one (0xF1) is illegal [2]. Another related
aspect for rapid convergence is that Intel uses a variable-length instruction set.
Figure 2 gives a overview of the general instruction formation for the IA-32
architecture [2]. The length of the actual decoded instruction depends not only
on the opcode, which may be 1-3 bytes long, but also on the directives provided
by the prefix, ModR/M and SIB bytes wherever applicable. Also note that not
all start bytes will lead to a successful disassembly and in such an event, they
are decoded as a data byte.

3.2 Analysis

We give a more formal analysis for this phenomenon. Given a byte stream, let’s
assume that the actual exploit code is embedded at some offset x = 0, 1, 2, . . ..
Ideally, binary disassembly to recover the instruction stream should begin or at
least coincide at x. However, since we do not know x, we start from the first
byte in the byte stream. We are interesting in knowing how soon after x does our
disassembly synchronize with the actual instruction stream of the exploit code.

To answer this question, we model the process of disassembly as a random
walk over the byte stream where each byte corresponds to a state in the state
space. Disassembly is a strictly forward-moving random walk and the size of
each step is given by the length of the instruction decoded at a given byte.
There are two random walks, one corresponding our disassembly and the other
corresponding to the actual instruction stream. Note that both random walks
do not have to move simultaneously nor do they take the same number of steps
to reach the point where they coincide.

Translating to mathematical terms, let L = {1, . . . , N} be the set of possible
step sizes or instruction lengths, occurring with probabilities {p1, . . . , pN}. For
the first walk, let the step sizes be {X1, . . . , |Xi ∈ L}, and define Zk =

∑k
j=1 Xj .

Similarly for the second walk, let step sizes be {X̃1, . . . , |X̃i ∈ L} and Z̃k =
∑k

j=1 X̃j . We are interested in finding the probability that the random walks
{Zk} and {Z̃k} intersect, and if so, at which byte position.
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One way to do this, is by studying ‘gaps’, defined as follows: let G0 = 0,
G1 = |Z̃1 − Z1|. G1 = 0 if Z̃1 = Z1, in which case the walks intersect after 1
step. In case G1 > 0, suppose without loss of generality that Z̃1 > Z1. In terms of
our application: {Zk} is the walk corresponding to our disassembly, and {Z̃k} is
the actual instruction stream. Define k2 = inf{k : Zk ≥ Z̃1} and G2 = Zk2 − Z̃1.
In general, Z and Z̃ change roles of ‘leader’ and ‘laggard’ in the definition of
each ’gap’ variable Gn. The {Gn} form a Markov chain. If the Markov chain is
irreducible, the random walks will intersect with positive probability, in fact at
the first time the gap size is 0. Let T = inf{n > 0 : Gn = 0} be the first time the
walks intersect. The byte position in the program block where this intersection
occurs is given by ZT = Z1 +

∑T
i=1 Gi.

In general, we do not know Z1, our initial position in the program block,
because we do not know the program entry point. Therefore, we are most inter-
ested in the quantity

∑T
i=1 Gi, representing the number of byte positions after

the dissassembly starting point that synchronization occurs.
Using partitions and multinomial distributions, we can compute the ma-

trix of transition probabilities pn(i, j) = P (Gn+1 = j|Gn = i) for each i, j ∈
{0, 1, . . .N − 1}. In fact pn(i, j) = p(i, j) does not depend on n, i.e. the Markov
chain is homogeneous. This matrix allows us e.g. to compute the probability that
the two random walks will intersect n positions after disassembly starts.

The instruction length probabilities {p1, . . . , pN} required for the above com-
putations are dependent on the byte content of network flows. The instruction
length probabilities were obtained by disassembly and statistical computations
over the same network flows chosen during empirical analysis (HTTP, SSH, X11,
CIFS). In Figure 3, we have plotted the probability P (

∑T
i=1 Gi >n), that inter-

section (synchronization) occurs beyond n bytes after start of disassembly, for
n=0, . . . , 99.
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It is clear that this probability drops fast, in fact with probability 0.95 the
disassembly walk’ and the ’program walk’ will have intersected on or before
the 21st (HTTP), 16th (SSH), 15th (X11) and 16th (CIFS) byte respectively,
after the disassembly started. On average, the walks will intersect after just 6.3
(HTTP), 4.5 (SSH), 3.2 (X11) and 4.3 (CIFS) bytes respectively.

4 Static Analysis Based Detection

From a security standpoint, static analysis is often used to find vulnerabilities
and related software bugs in program code. It is also used to determine if a given
program contains malicious code or not. However, due to code obfuscation tech-
niques and undecidability of aliasing, accurate static analysis within reasonable
time bounds is a very hard problem. On one hand, superficial static analysis
is efficient but may lead to poor coverage, while on the other, a high accuracy
typically entails a prohibitively large running time.

4.1 Working Premise

In our approach, we use static analysis over network flows, and in order to realize
an online network-based implementation, efficiency is an important design goal.
Normally, this could translate to poor accuracy, but in our case we use static
analysis only to devise a process of elimination. which is based on the premise
that an exploit code is subject to several constraints in terms of the exploit code
size and control flow. Subsequently, these constraints will help determine if a
byte stream is data or program-like code.

Exploit Code Size. For every vulnerable buffer, an attacker can potentially
can write arbitrary amount of data past the bounds of the buffer, but this will
most likely result in a crash as the writes may venture into unmapped or invalid
memory. This is seldom the goal of a remote exploit and in order to be successful,
the exploit code has to be carefully constructed to fit inside the buffer. Each
vulnerable buffer has a limited size and this in turn puts limits on the size of
the transmitted infection vector.

Branch Instructions. The interesting part of a branch instruction is the branch
target and for an exploit code, the types of branch targets are limited - 1) due
to the uncertainty involved during a remote infection, control flow cannot be
transferred to any arbitrary memory location, 2) due to the size constraints,
branch targets can be within the payload component and hence, calls/jumps
beyond the size of the flow are meaningless, or 3) due to the goals which must
be achieved, the exploit code must eventually transfer control to a system call.
Branch instructions of interest [2] are jmp family, call/ret family, loop family
and int.

System Calls. Even an attacker must look to the underlying system call subsys-
tem to achieve any practical goal such as a privileged shell. System calls can be
invoked either through the library interface (glibc for Linux and kernel32.dll,



A Fast Static Analysis Approach 295

ntdll.dll for Windows) or by directly issuing an interrupt. If the former is cho-
sen, then we look for the preferred base load address for libraries which on Linux
is 0x40—— and 0x77—— for Windows. Similarly, for the latter, then the corre-
sponding interrupt numbers are int 0x80 for Linux and int 0x2e for Windows.

A naive approach to exploit code detection would be to just look for branch
instructions and their targets, and verify the above branch target conditions.
However, this is not adequate due to the following reasons, necessitating addi-
tional analysis. First, in our experience, although the byte patterns satisfying
the above conditions occur with only a small probability in a network flow, it
is still not sufficiently small to avoid false positives. Second, the branch targets
may not be obvious due to indirect addressing, that is, instead of the form ‘call
0x12345678’, we may have ‘call eax’ or ‘call [eax]’.

There two general categories of exploit code from a static analysis viewpoint
depending on the amount of information that can be recovered. To the first cat-
egory belong those types of exploit code which are transmitted in plain view
such as known exploits, zero-day exploits and metamorphic exploits. The sec-
ond category contains exploit code which is minimally exposed but still contains
some hint of control flow, and polymorphic code belongs to this category. Due
to this fundamental difference, we approach the process of elimination for poly-
morphic exploit slightly differently although the basic methodology is still on
static analysis. Note that if both polymorphism and metamorphism are used,
then the former is the dominant obfuscation. We now turn to the details of our
approach starting with binary disassembly.

4.2 Disassembly

In general, Intel disassembly is greedy in nature, quickly consuming bytes until
the actual instruction stream is reached. As this happens regardless of where
the disassembly begins, it is already an efficient instruction recovery mechanism.
Convergent dissembly is also useful when data is embedded inside the instruction
stream. As an illustration, consider the following byte sequence which begins
with a jmp instruction and control flow is directed over a set of data bytes into
NOPs. Observe that convergence holds good even in this case with the data
bytes being interpreted as instructions, and although there is a loss of one NOP,
it still synchronizes with the instruction stream.

Byte sequence: EB 04 DD FF 52 90 90

00000000: EB04 jmp short 0x6
00000002: DD0A fisttp dword [edx]
00000004: DD db 0xDD
00000005: FF5290 call near [edx-0x70]
00000008: 90 nop

However, there are caveats to relying entirely on convergence; the technique
is lossy and this does not always bode well for static analysis because while the
loss of instructions on the NOOP sled is not serious, loss of instructions inside
the exploit code can be.
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Due to the nature of conditions being enforced, branch instructions are im-
portant. It is desirable to recover as many branch instructions as possible, but
it comes at the price of a large processing overhead. Therefore, depending on
whether the emphasis is on efficiency or accuracy, two disassembly strategies
arise.

Strategy I: (Efficiency). The approach here is to perform binary disassembly
starting from the first byte without any additional processing. The convergence
property will ensure that at least a majority of instructions including branch
instructions has been recovered. However, this approach is not resilient to data
injection.

Strategy II: (Accuracy). The network flow is scanned for opcodes corre-
sponding to branch instructions and these instructions are recovered first. Full
disassembly is then performed over the resulting smaller blocks. As a result, no
branch instructions are lost.

The latter variation of binary disassembly is slower not only because of an ad-
ditional pass over the network flow but also the number of potential basic blocks
that may be identified. The resulting overheads could be significant depending
on the network flow content. For example, one can expect large overheads for
network flows carrying ASCII text such as HTTP traffic because several condi-
tional branch instructions are also printable characters, such as the ’t’ and ’u’,
which binary disassembly will interpret as je and jne respectively.

4.3 Control and Data Flow Analysis

Our control and data flow analysis is a variation of the standard approach.
Having performed binary disassembly using one of the aforementioned strategies,
we construct the control flow graph (CFG). Basic blocks are identified as usual
via block leaders - the first instruction is a block leader, the target of a branch
instruction is a block leader, and the instruction following a branch instruction
is also a block leader. A basic block is essentially a sequence of instructions in
which flow of control enters at the first instruction and leaves via the last. For
each block leader, its basic block consists of the leader and all statements upto
but not including the next block leader. We associate one of three states with
each basic block - valid, if the branch instruction at the end of the block has a
valid branch target, invalid, if the branch target is invalid, and unknown, if the
branch target is not obvious. This information helps in pruning the CFG. Each
node in the CFG is a basic block, and each directed edge indicates a potential
control flow. We ignore control predicate information, that is, true or false on
outgoing edges of a conditional branch. However, for each basic block tagged as
invalid, all incoming and outgoing edges are removed, because that block cannot
appear in any execution path. Also, for any block, if there is only one outgoing
edge and that edge is incident on an invalid block, then that block is also deemed
invalid. Once all blocks have been processed, we have the required CFG. Figure 4
shows the partial view of a CFG instance. In a typical CFG, invalid blocks form
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a very large majority and they are excluded from any further analysis. The
role of control flow analysis in our approach is not only to generate the control
flow graph but also to greatly reduce the problem size for static analysis. The
remaining blocks in a CFG may form one or more disjoint chains (or subgraphs),
each in turn consisting of one or more blocks. In Figure 4, blocks numbered 1
and 5 are invalid, block 2 is valid and ends in a valid library call, and blocks 3
and 4 form a chain but the branch instruction target in block 4 is not obvious.
Note that the CFG does not have a unique entry and exit node, and we analyze
each chain separately.

Fig. 4. A snapshot of a typical CFG after control flow analysis

We use data flow analysis based on program slicing to complete the process
of elimination. Program slicing is a decomposition technique which extracts only
parts of a program relevant to a specific computation, and there is a rich lit-
erature on this topic [34,20,14]. For our purpose, we adopt the backward static
slicing technique approach proposed by Weiser [28], who used the control flow
graph as an intermediate representation for his slicing algorithm. This algorithm
has a running time complexity of O(v × n × e), where v, n, e are the numbers
of variables, vertices and edges in the CFG, respectively. Given that there are
only a fixed number of registers on Intel platform, and that the number of ver-
tices and edges in a typical CFG is almost the same, the running time is O(n2).
Other approaches exist which use different representations such as program de-
pendence graph (PDG) and system dependence graph (SDG), and perform graph
reachability based analysis [30,17]. However, these algorithms incur additional
representation overheads and are more relevant when accuracy is paramount.

In general, a few properties are true of any chain in the reduced CFG. Every
block which is not the last block in the chain has a branch target which is an
offset into the network flow and points to its successor block. For the last block
in a chain, the following cases capture the nature of the branch instruction.

Case I: Obvious Library Call. If the last instruction in a chain ends in a
branch instruction, specifically call/jmp, but with an obvious target (immedi-
ate/absolute addressing), then that target must be a library call address. Any
other valid branch instruction with an immediate branch target would appear
earlier in the chain and points to the next valid block. The corresponding chain
can be executed only if the stack is in a consistent state before the library call,
hence, we expect push instructions before the last branch instruction. We com-
pute a program slice with the slicing criterion < s, v >, where s is the statement
number of the push instruction and v is its operand. We expect v to be defined
before it is used in the instruction. If these conditions are satisfied, then an alert
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is flagged. Also, the byte sequences corresponding to the last branch instruction
and the program slice are converted to a signature (described later).

Case II: Obvious Interrupt. This is other case of the branch instruction
with an obvious branch target, and the branch target must be a valid interrupt
number. In other words, the register eax is set to a meaningful value before the
interrupt. Working backwards from the int instruction, we search for the first
use of the eax register, and compute a slice at that point. If the eax register is
assigned a value between 0-255, then again an alert is raised, and the appropriate
signature is generated.

Case III: The ret Instruction. This instruction alters control flow but de-
pending on the stack state. Therefore, we expect to find at some point earlier in
the chain either a call instruction, which creates a stack frame or instructions
which explicitly set the stack state (such as push family) before ret is called.
Otherwise, executing a ret instruction is likely to cause a crash rather than a
successful exploit.

Case IV: Hidden Branch Target. If the branch target is hidden due to
register addressing, then it is sufficient to ensure that the constraints over branch
targets presented in 4.1 hold over the corresponding hidden branch target. In
this case, we simply compute a slice with the aim of ascertaining whether the
operand is being assigned a valid branch target. If so, we generate alert.

Polymorphic Exploit Code. As mentioned earlier, polymorphic exploit code
is handled slightly differently. Since only the decryptor body can be expected to
be visible and is often implemented as a loop, we look for evidence of a cycle in
the reduced CFG, which can be achieved in O(n), where n is the total number of
statements in the valid chains. Again, depending on the addressing mode used,
the loop itself can be obvious or hidden. For the former case, we ascertain that at
least one register being used inside the loop body has been initialized outside the
body. An alternative check is to verify that at least one register inside the loop
body references the network flow itself. If the loop is not obvious due to indirect
addressing, then the situation is similar to case IV. We expect that the branch
target to be assigned a value such that control flow points back to the network
flow. By combining this set of conditions with the earlier cases, we have a generic
exploit code detection technique which is able to handle both metamorphic and
polymorphic code.

Potential for Evasion. Any static analysis based approach has a limitation in
terms of the coverage that can be achieved. This holds true even for our approach
and an adversary may be able to synthesize which evades our detection technique.
However, there are some factors in our favor. Obfuscations typically incur space
overheads and the size of the vulnerable buffer is a limiting factor. Moreover,
in the reduced CFG, we scan every valid chain and while it may be possible to
evade detection in a few chains, we believe it is difficult to evade detection in
all of them. Finally, the above rules for detection are only the initial set and
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may require updating with time, but very infrequently as compared to current
signature-based systems.

4.4 Signature Generation

Control flow analysis produces a pruned CFG and data flow analysis identifies
interesting instructions within valid blocks. A signature is generated based on
the bytes corresponding to these instructions. Note that we do not convert a
whole block in the CFG into a signature because noise from binary disassembly
can misrepresent the exploit code and make the signature useless. The main
consideration while generating signatures is that while control and data flow
analysis may look at instructions in a different light, the signature must con-
tain the bytes in the order of occurrence in a network flow. We use the regular
expression representation containing wildcards for signatures since the relevant
instructions and the corresponding byte sequences may be occur disconnected in
the network flow. Both Bro and Snort (starting from version 2.1.0) support reg-
ular expression based rules, hence, our approach makes for a suitable signature
generation engine.

5 An Exploit Detection Sensor

So far we have described the inner workings of our exploit detection algorithm.
We now turn to its application in the form of a network flow-based exploit de-
tection sensor called styx. Figure 5 presents a design overview. There are four
main components: flow monitor, content sieve, malicious program analyzer and
executable code recognizer. The executable code recognizer forms the core com-
ponent of styx, and other components assist it in achieving its functionality and
improving detection accuracy.

Fig. 5. Architecture of an exploit code detection sensor based on convergent static
analysis
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Flow Monitor. Our view of the information transfer over networks is that
of network flows. The main task of the flow monitor is to intercept incom-
ing/outgoing packets and reconstruct the corresponding flow data. Network flows
can be unidirectional or bidirectional, and both directions can contain executable
worm code. We implemented the flow monitor using tcpflow, which captures
and reassembles the network packets. We have used tcpflow mainly because it
is an off-the-shelf open-source tool which is readily available and can be easily
modified to suit our requirements. tcpflow writes all the information exchanged
between any two hosts into two separate files, one for each direction.

We consider both TCP and UDP flows. Reconstruction of TCP flows is fairly
straightforward even when packets arrive out of order. UDP is an unreliable pro-
tocol and when packets arrive out of order, reconstructing the intended network
stream is not possible. In such cases, styx will likely miss the embedded exploit
code. However, this is not such a serious issue as it may seem because if the UDP
packets arrived in a different order than what a exploit code author intended,
then it is unlikely that infection will be successful. This is perhaps why not many
exploit code which transmit using UDP, and when such worms are implemented,
the worm code is very small. For example, the Slammer/Sapphire worm used
UDP and was small enough to fit in only one UDP packet.

Content Sieve. Some network flows may contain programs which can pass all
our tests of exploit code detection leading to false positives. It is therefore neces-
sary to make an additional distinction between program-like code and programs.
The content sieve is responsible for filtering content which may interfere with
the executable code recognizer component. To this end, before deploying styx, it
is necessary to specify which services may or may not contain executable code.
This information is represented as a 3-tuple (π, τ , υ), where π is the standard
port number of a service, τ is the type of the network flow content, which can
be data-only (denoted by d) or data-and-executable (denoted by dx), and υ is
the direction of the flow, which is either incoming (denoted by i) or outgoing
(denoted by o). For example, (ftp, d, i) indicates an incoming flow over the
ftp port has data-only content type. Further fine-grained rules could be specified
on a per-host basis. However, in our experience we have seen that for a large or-
ganization which contains several hundred hosts, the number of such tuples can
be very large. This makes fine-grained specification undesirable more so because
it puts a large burden on the system administrator rather than the impact it
may have on styx’s performance. If a rule is not specified, then data-only net-
work flow content is assumed by default for the sake of convenience since most
network flows carry data. Therefore, the content sieve is activated only when a
flow has a rule indicating that it is not data-only.

The content sieve has been implemented to identify Linux and Microsoft Win-
dows executable programs. Our data set shows that occurrence of programs in-
side flows is not very common and when they do occur, it can attributed to
downloads of third-party software from the Internet. We believe that the oc-
currence of programs could be much higher in popular peer-to-peer file sharing
networks. However, the security policy at the enterprise where the data was



A Fast Static Analysis Approach 301

collected, prevents use of such networks and therefore our data set is not repre-
sentative of this scenario.

Programs on the Linux and Windows platform follow the ELF [7] and the PE
[8] executable formats respectively. We describe the methodology for detecting
an ELF executable; the process is similar for a PE executable. The network flow
is scanned for the characters ‘ELF’ or equivalently, the consecutive bytes 454C46
(in hexadecimal). This byte sequence usually marks the start of a valid ELF
executable. Next, we look for the following positive signs to ascertain that the
occurrence of the these bytes was not merely a coincidence.

ELF Header: The ELF header contains information which describes the layout of
the entire program, but for our purposes, we require only certain fields to perform
sanity checks. For example, the e ident field contains machine independent
information and must assume meaningful values (see [7]), e machine must be
EM 386, e version must be 1, etc. As our data set indicates, these checks are
usually adequate. But if additional confirmation is required, then we also perform
the next two checks.

Dynamic Segment: From the ELF header, we find the offset of the Program
Header and subsequently, the offset of the Dynamic Segment. If this segment
exists, then the executable uses dynamic linkage and the segment must contain
the names of the external shared libraries such as libc.so.6.

Symbol and String Tables: Also from the ELF header, we find the offset of symbol
and string tables. The string tables must strictly contain printable characters.
Also, the symbol table entries must point to valid offsets into the string table.

The format of a PE header closely resembles an ELF header and we perform
similar checks as described above. A Windows PE executable file [8] starts with
a legacy DOS header, which contains two fields of interest - e magic, which
must be the characters ‘MZ’ or equivalently the bytes 5A4D (in hexadecimal),
and e lfanew, which is the offset of the PE header.

It is highly unlikely that normal network data will conform to all these spec-
ifications. Therefore, when all of them are satisfied, it is reasonable to assume
that an executable program has been found. As the next step, we mark the
boundaries of the executable and exclude it from further analysis.

Malicious Program Analyzer. While the main aim of the content sieve is
to identify full programs inside network flows which in turn contain executable
code fragments so that they do not interfere with our static analysis scheme,
there is a beneficial side-effect. Since we have the capability of locating pro-
grams inside network flows, they can passed as input to other techniques [24] or
third-party applications such as anti-virus software. This also helps when an
attacker transfers malicious programs and rootkits following a successful exploit.
The malicious program analyzer is a wrapper encapsulating this functionality
and is a value-added extension to expfl0w.

Executable Code Recognizer. After the preliminary pre-processing, the net-
work flow is input to the executable code recognizer. This component primarily
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implements the convergent static analysis approach described in Section 4. It is
responsible both for raising alerts and generating the appropriate signatures.

6 Evaluation

We have performed experimental evaluation primarily to determine detection
efficacy and performance overheads. The first dataset used in the experiments
consisted of 17 GB of network traffic collected over a few weeks at a enterprise
network, which is comprised mainly of Windows hosts and a few Linux boxes.
The organization policy prevented us from performing any live experiments.
Instead, the data collection was performed with only the flow monitor enabled,
while algorithmic evaluation was performed later by passing this data through
the rest of the exploit detection sensor in a quarantined environment. During the
period this data was collected, there was no known worm activity and neither
did any of the existing IDS sensors pick up exploit-based attacks. Therefore,
this dataset is ideal to measure the false positive rates as well running times of
our algorithm. In order to specifically measure detection rates, we used exploits
generated using the Metasploit framework [3].

6.1 Detection

When performing detection against live network traffic, the exploit code detec-
tion sensor did not report the presence of exploit code in any of the network flows.
The live traffic which was collected contained mostly HTTP flows and these flows
had the potential to raise false positives due to the ASCII text and branch in-
struction problem mentioned earlier. However, since we use further control and
data flow analysis, none of the CFGs survived the process of elimination to raise
any alarms. The other types of network flows were either binary or encrypted
and the reduced CFGs were far smaller in size and number, which were quickly
discarded as well. However, we warn against hastily inferring that our approach
has a zero false positive rate. This is not true in general because our technique
is probabilistic in nature and although the probability of a false positive may be
very small, it is still not zero. But this is already a significant result since one of
the downsides of deploying an IDS is the high rate of false positives.

Next we studied detection efficacy and possible ways in which false nega-
tives can occur. Using the Metasploit framework [3], it is possible to handcraft
not only several types of exploit code but also targeted for different platforms.
There are three main components in the Metasploit framework - a NOOP sled
generator with support for metamorphism, a payload generator, and a pay-
load encoder to encrypt the payload. Therefore, one can potentially generate
hundreds of real exploit code versions. We are interested only in Intel-based
exploits targeted for Windows and Linux platforms. We discuss the interesting
representative test cases.

Metamorphic Exploit Code. Due to the nature of our detection process, the
payload of metamorphic code is not very different from any other vanilla exploit
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code. The Metasploit framework allows the generation of metamorphic NOOP
sleds. The following is the relevant code segment which is the output of the ’Pex’
NOOP sled generator combined with the ’Windows Bind Shell’ payload. Note
the different single-byte opcodes which form the NOOP sled. We have also shown
portions of the payload which were a part of the first valid chain encountered
when analyzing the flow containing the exploit code. The corresponding signa-
ture which was generated was: 60 .* E3 30 .* 61 C3. Note that stack frame
which was created using pusha was popped off using popa, but just the mere
presence of stack-based instructions in the chain is deemed adequate evidence.

00000001 56 push esi
00000002 97 xchg eax,edi
00000003 48 dec eax
00000004 47 inc edi

. . .
00000009 60 pusha
0000000A 8B6C2424 mov ebp,[esp+0x24]
0000000E 8B453C mov eax,[ebp+0x3c]
00000011 8B7C0578 mov edi,[ebp+eax+0x78]

. . .
0000001F E330 jecxz 0x51

. . .
00000051 61 popa
00000052 C3 ret

Polymorphic Exploit Code. We generated a polymorphic exploit code using
the ’PEX encoder’ over the ’Windows Bind Shell’ payload. This encoder uses a
simple XOR-based scheme with the key encoded directly in the instruction. We
highlight the following segment of code, where 0xfd4cdb57 at offset 0000001F
is the key. The encrypted payload starts at offset 0000002B. Our approach was
able to detect this polymorphic code because of the conditions satisfied by the
loop instruction with esi register being initialized before the loop and refer-
enced within the loop. The corresponding signature which was generated was:
5E 81 76 0E 57 DB 4C FD 83 EE FC E2 F4. A caveat is that this signature is
very specific to this exploit code instance due to the key being included in the
signature. If the key is excluded then, we have a more generic signature for the
decryptor body. However, this requires additional investigation and part of our
future work.

00000018 E8FFFFFF call 0x1C
0000001C FFC0 inc eax
0000001E 5E pop esi
0000001F 81760E57DB4CFD xor dword [esi+0xe],0xfd4cdb57
00000026 83EEFC sub esi,byte -0x4
00000029 E2F4 loop 0x1F
0000002B C7 db 0xC7



304 R. Chinchani and E. van den Berg

Worm Code. We used Slammer/Sapphire as the test subject. The worm code
follows a very simple construction and uses a tight instruction cycle. The whole
worm code fits in one UDP packet. The payload used was an exploit against
the MS SQL server. Again, both versions of our approach were able to detect
the worm code and generated the signature: B8 01 01 01 01 .* 50 E2 FD,
which corresponds to the following portion of the worm code [4]. This is the first
executable segment which satisfies the process of elimination and our algorithm
exits after raising an alert.

0000000D B801010101 mov eax,0x1010101
00000012 31C9 xor ecx,ecx
00000014 B118 mov cl,0x18
00000016 50 push eax
00000017 E2FD loop 0x16

In our experience, both variations of our exploit code detection algorithm
were equally effective in detecting the above exploit code versions. This was
mainly because the payload consisted of continuous instruction streams. How-
ever, carefully placed data bytes can defeat the fast disassembly scheme, making
the accurate scheme more relevant.

6.2 Performance Overheads

We compared our approach against a signature-based detection system - Snort.
Several factors contribute to the runtime overheads in both approaches. For
Snort, the overheads can be due to network packet reassembly, signature table
lookups, network flow scanning and writing to log files. On the other hand, for
our approach, overheads are be caused by network packet reassembly, binary dis-
assembly and static analysis. We are mainly interested in understanding running-
time behavior, and therefore, implemented and compared only the core detection
algorithms. Moreover, since we conducted our experiments in an offline setting,
all aspects of a complete implementation cannot be meaningfully measured.

The single most important factor is the network flow size. In order to cor-
rectly measure running time for this parameter only, we either eliminated or
normalized other free parameters. For example, Snort’s pattern matching algo-
rithm also depends on the size of the signature repository while in our approach
signatures are a non-factor. We normalized it by maintaining a constant Snort
signature database of 100 signatures throughout the experiment. The bulk of
these signatures were obtained from http://www.snort.org and the rest were
synthesized. All experiments were performed on 2.6 GHz Pentium 4 with 1 GB
RAM running Linux (Fedora Core 3).

Figure 6 shows the results obtained by running both variations of our approach
against Snort’s pattern matching. We considered four kinds of network flows
based on flow content. As is evident from the plots, pattern matching is extremely
fast and network flow size does not appear to be a significant factor. In contrast,
the running time of our approach shows a non-negligible dependence on the size
of network flows. Both variations of our approach display a linear relationship,

http://www.snort.org
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(b) SSH (port 22)
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(c) X11 (port 6000)
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Fig. 6. Comparison of network flow processing times between our approach (both fast
and accurate disassembly) and Snort’s pattern matching

however, the slopes are drastically different. The fast disassembly version incurs
far smaller overheads, while the accurate disassembly version may be impractical
in the context of live network traffic when flow sizes are large. Referring again
to pattern matching, We also believe that a larger signature repository is also
not likely to affect running time significantly. However, the downside is that
since detection requires the signature database to be constantly updated and
maintained, there is a large space overhead which increases with each additional
signature. Our approach scores over pattern matching in this regard since it does
not require maintaining any such tables.

Deployment Issues. The runtime performance studies provide us with useful
insight into practical deployment scenarios. Snort can be deployed at various
points including a network tap configuration at the organization’s network entry
point where the volume of network is the highest. In contrast, our approach
may not be very suitable at this point of deployment; even the faster version
may show noticeable latency. Instead, internal routers or end hosts are more
practical deployment sites. There is yet another possibility. Since the input to
the core algorithm is eventually a stream of bytes, our approach, sans the network
processing components, can be implemented directly into programs for additional
validation of all incoming program inputs at runtime.
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Improvements. In our performance measurements experiments, as expected,
HTTP traffic incurred the highest overheads because of the printable ASCII
characters being more frequent than other flows, which resulted in a larger num-
ber of branch instructions and basic blocks. For example, a typical flow of 10 KB
in size returned 388 basic blocks for the fast version and 1246 basic blocks for the
accurate version. This number can be reduced by preprocessing a network flow
and removing application level protocol headers containing ASCII text. Since
most traffic is HTTP, this may be a worthwhile improvement. Other general
improvements can be made by optimizing the implementation. Another distinct
possibility is to implement our approach in hardware since it has no dynamic
components such as a signature repository. We believe this can lead to very
significant performance improvements.

7 Conclusion and Future Work

In this paper, we have described an efficient static analysis based litmus test
to determine if a network flow contains exploit code. This is a significant de-
parture from existing content-based detection paradigms. Our approach has
the ability to detect several different types of exploit code without any main-
tenance costs, making for a true plug-n-play security device. On the downside,
although our static analysis technique is very efficient compared to traditional
static analysis approaches, it is still not fast enough to handle very large net-
work traffic, and therefore, there are deployment constraints. Therefore, we
believe our approach cannot replace existing techniques altogether, but rather
work in tandem with them.

There are three main avenues which we are actively pursuing as a part of
our ongoing and future work. First, we are investigating ways to sensitize our
static analysis based detection against potential obfuscations. This will greatly
improve the long-term relevance of our approach rather than being a stop-gap so-
lution. Second, we are studying possible ways in which our approach can be sped
up significantly. This would close the performance gap between signature-based
detection schemes and our technique. Finally, after satisfactory maturation, we
will perform more exhaustive testing in a live deployment setting.
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